

气质联用法测定食品中 3-乙酰基-2,5-二甲基噻吩

BJS202106

前言

2021年1月国家市场监督管理总局发布关于《食品中3-乙酰基-2,5-二甲基噻吩的测定》等6项食品补充检验方法,明确规定了3-乙酰基-2,5-二甲基噻吩在食品中的含量限制。

3-乙酰基-2,5-二甲基噻吩(ADP)具有烧烤, 坚果的气味,于2002年开始作为食品用香料使 用,但于2013年欧洲食品安全管理局认为其在 体内和体外试验均表现出致突变性,作为食品 用香料使用存在安全问题,将其从食品用香料 法规附录l食品中香料清单中删除。

Author:

天美仪拓实验室设备(上海)有限公司 色谱市场部

Abstract

本应用采用了SCION 456-GC-SQ气质联用系统建立了食品中3-乙酰基-2,5-二甲基噻吩含量的测定方法,该方法操作简单,重复性良好,均小于1%,回收率在90%-110%之间,符合BJS202106《食品中3-乙酰基-2,5-二甲基噻吩的测定》要求。

Techcomp

实验部分

使用配备了分流/不分流进样口的SCION 456-GC-SQ 气质联用仪和Autosampler8400自动进样器。

样品准备

标准品: 3-乙酰基-2,5-二甲基噻吩标准品98.5% (CAS2530-10-1)

标准溶液配置

标准储备液配置 (1000ug/ml): 称取0.010g标准物

质, 用正庚烷定容至10ml;

标准中间液配置(1ug/ml): 移取1000ug/ml标准储

备液100ul,用正庚烷定容至100ml;

标准曲线配置:分别移取适量的1ug/ml的标准中间液,使其浓度分别为5ng/ml,10ng/ml,20ng/ml,50ng/ml,100ng/ml,200ng/ml。

样品制备

称取3g待测样品,加入15ml的正庚烷,涡旋1min,离 心5min,过滤上机。

色谱条件

色谱柱: SCION-WAX (30m*0.32mm*0.25um)

进样口: 220℃

载气: He 1.5ml/min 恒流

进样模式: 分流

分流比: 5

升温程序: 50℃保持1min;

20℃/min升至200℃保持3min; 25℃/min升至240℃保持5min。

质谱条件

离子源: 惰性EI源

扫描模式: SIM

扫描范围: 50-350aum

溶剂延迟: 5min

Manifold温度: 40℃

离子源温度: 230℃

传输线温度: 280℃

实验结果

使用上述仪器条件对1.0ug/ml的3-乙酰基-2,5-二甲基噻吩进行分析,如图1所示,其能得到很好的分离。并对该方法进行自动生成SIM采集事件,提高灵敏度。



图1标准溶液的总离子流图

实验最低检出限

在SIM采集下,对5ng/ml进行分析,其信噪比为27,满足条件,图谱见图2。

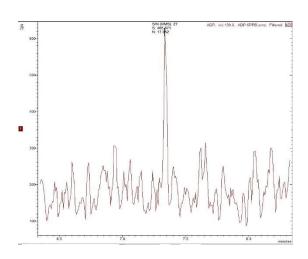


图2 SIM模式下的信噪比

校准曲线

使用SIM采集方法,采用外标法进行校准,依次从低浓度到高浓度进行测定。化合物的保留时间,定量离子,定性离子以及线性回归系数 (R^2) 列于表1中,其线性回归系数 (R^2) 为0.999,满足标准要求。

化合物	保留时间	定量及 定性离子	R ²
3-乙酰基- 2,5-二甲 基噻吩	7.338	139 111,154	0.999

表1 待测物的采集时间和线性回归系数

校准曲线见图3。

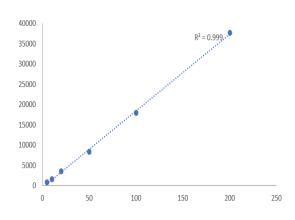


图3 待测物校准曲线

重复性测定

使用100ng/ml的标准工作液按照测试条件进行重复性实验,得到目标化合物的重叠色谱图如图4所示。由此可知,目标化合物重现性良好,其结果平均值为101.090ng/ml; RSD为0.763%。以上结果显示测试的准确度和精密度均为优良水平。

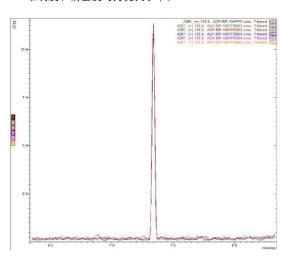


图4 待测物重复性实验结果

空白加标回收测试

称取3g去离子水于反应瓶中,加入75ul 20ug/ml的标准溶液于反应瓶中,加入15ml正庚烷于反应瓶中,涡旋1min,震荡5min;离心取上清液过滤上机测试。测试结果见表2。

样品名称	加标量	定容体积 (ml)	化合物/ 定量离子	保留时间 (min)	浓度 (ug/kg)	回收率(%)	RSD
75ul 20ug/ 去离子水 ml的标 准储备 液	15ml ADP 139	ADP 139	7.336	96.382	96.4	0.875%	
			7.339	94.475	94.5		
			7.338	95.628	95.6		
			7.338	95.466	95.5		
			7.338	94.925	94.9		
			7.338	96.669	96.7		

表2 空白加标回收测试结果

由上表结果可以看出,空白加标回收测试,其回收率在94.5%-96.7%之间,RSD为0.875%,符合BJS202106标准的测试要求。可见测试条件优良,测试过程控制良好。谱图见图5。

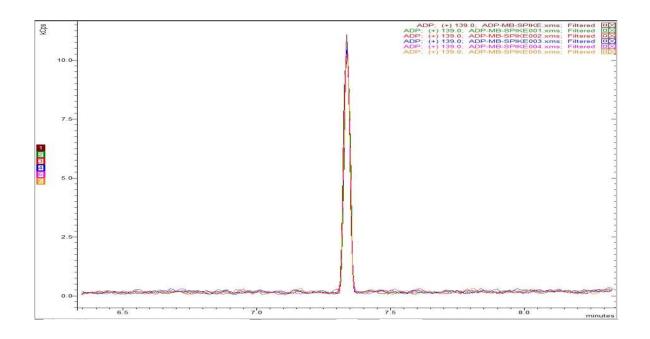


图5空白加标回收谱图

加标回收测试

分别取3g液体样品1和液体样品2于反应瓶中,加入75ul 20ug/ml的标准溶液于反应瓶中,加入15ml正庚烷于反应瓶中,涡旋1min,震荡5min;离心取上清液过滤上机测试。测试结果见表3。

样品名称	加标量	定容体积 (ml)	化合物/ 定量离子	保留时间 (min)	浓度 (ug/kg)	回收率 (%)	RSD
75ul 20ug/m 样品1 l的标准 储备液	15ml ADP 139		7.337	108.224	108.2	0.594%	
			7.338	107.497	107.5		
			7.338	107.718	107.7		
			7.337	108.366	108.4		
			7.338	108.977	109.0		
				7.338	109.088	109.1	
				7.337	109.043	109.0	
75ul 20ug/m 样品2 l的标准 储备液	/m 淮 15ml ADP 139	ADP	7.337	109.668	109.7	0.475%	
			7.339	109.400	109.4		
		139	7.337	108.173	108.2		
		7.338	109.158	109.2			
			7.338	109.366	109.4		

表3样品加标回收测试结果

由上表结果可以看出,标准储备液经过前处理后上机测试,回收率在107.5%-109.7%之间,RSD分别为0.594%和0.475%,符合BJS202106标准的测试要求。可见测试条件优良,测试过程控制良好。谱图见图6。

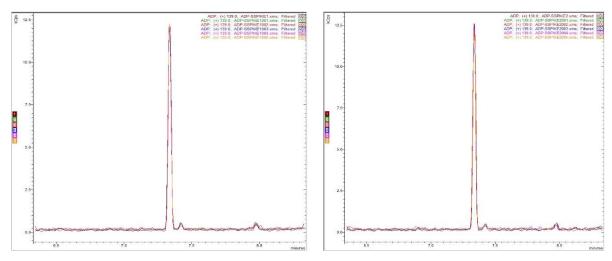


图6样品加标回收谱图

结论

使用SCION 456-GC-SQ对食品中3-乙酰基-2,5-二甲基噻吩的测试效果优良、准确,符合BJS202106的要求,可以用于待测样品的准确测试。

参考文献

【1】BJS202106食品中3-乙酰基-2,5-二甲基噻吩的测定